Structural and Electronic Properties of Delafossite CuGa<sub>1−x</sub>Mn<sub>x</sub>O<sub>2</sub>(X=0.5) Nanocomposite: A First Principle Study

  • S. S. Alhassan
  • A. Shuaibu Department of Physics, Kaduna State University, Kaduna State, Nigeria
  • M. Y. Onimisi Department of Physics, Nigerian Defence Academy, Kaduna State, Nigeria
Keywords: Density Functional Theory (DFT), Generalised Gradient Approximation, Perdew-Burke-Ernzerhof (PBE)


In this paper, we investigate the structural and electronic properties of manganese doped delafossite CuGaO2 nanocomposite using first principle study based on density functional theory (DFT). The generalised gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) has been used for both the undoped and doped systems. The crystal structure of the material does not change after manganese doping. Our calculation shows that the doped structure is stable. However, the results reveal that the 50% Mn doping decreases the band gap of the delafossite CuGaO2 system by 0.5 eV. The charge density distributions for the undoped CuGaO2 and CuGa1-xMnxO2(x=0.5) are almost the same.


A. N. Banerjee & K. K. Chattopadhyay, “P-type Transparent Semiconducting Delafossite CuAlO2+x Thin Film: Promising Material for Optoelectronic Devices and Field-Emission Displays”, Materials Science Research Trends (2008) 1.

A. Renaud, B. Chavillon, L. Le Pleux, Y. Pellegrin, E. Blart, A. Boujtita, T. Pauport, L. Cario, S. Jobic & F. Odobel, “CuGaO2: a promising alternative for NiO in p-type dye solar cells”, Journal of Material Chemisrty 22 (2012) 14353.

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi & H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2”,  Nature(London) 389 (1997) 939.

H. Yanagi, T. Hase, S. Ibuki, K. Ueda, & H. Hosono, “Bipolarity in the electrical conduction of transparent Oxide Semiconductor CuInO2 with delafossite structure”, Journal of Applied Physics 88 (2000) 4159.

N. Xiliang, W. Su-Hui & S. B. Zhang, “First Principles Study of doping and bandgap anomalies in delafossite transparent conductive oxides”, Annual APS March Meeting (2002) 18.

J. Tate, M. K. Jayaraj, A. D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagrajan, J. F. Wager & R. L. Hoffman, “P-type conductivity in the delafossite structure”, Thin Solid Films 411 (2002) 119.

H. Meijie, J. Kai, Z. Jinzhong, Y. Wenlei, L. Yawei, H. Zhigao & C. Junhao, “Structural, electronic band transition and optoelectronic properties of delafossite CuGa1-xCrxO2 (0≤x≤1)            Solid solution films grown by sol-gel method”, Journal of Material Chemistry 22 (2012) 18463.

H. C. Isaac, F. S. Franscisco, R. Adele, J.-L. Beatriz, O. Fabrice, C. Laurent, S. Jobic & G. Sixto, “Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by  impedance spectroscopy: The effect of Mg doping”, Electrochimica Acta 113 (2013) 570.

D. Ursu, N. Vaszilcsin, R. Banica & M. Miclau, “Effect of Al doping on performance of CuGaO2 p-type dye-sensitized solar cells”, Journal of material Engineering and performance 25 (2016) 59.

T. Y. Chien & C.L. Ching, “Improved electrical properties of P-type CuGaO2 semiconductor thin films through Mg and Zn doping”, Ceramics International 43 (2017) 2563.

N. H. Muhammad, Y. Yanfa, W. Aron, W. Su-Huai & M. A. Mowafak, “Group-IIIA Versus IIIB Delafossites: Electronic Structure Study”, Physical Review B 80 (2009) 035205.

Q. J. Liu, Z.T. Liu, J. C. Chen, L. P. Feng & Tian “First Principles Study of Structural, Mechanical, Electronic and Optical Properties of 3R-and 2H-CuGaO2”, Physica B 406 (2011) 3377.

P. Poopanya, R. Nakowong, A. Yanthaisong, & T. Seetwan, “Theoretical Calculations of Electronic Structure and Thermoelectric Properties of CuGaO2”, Proceedings-Science and Engineering (2013) 570.

S. Issei, N. Hiraku, K. Masao, I. Yuki, S. Chiyaki, Y. Hiroshi, O. Naoki & O. Takahisa.O, “First principle study of CuGaO2 polmorphs; Delafossite α- CuGaO2 and wurtzite β- CuGaO2”, Inorganic Chemistry 55 (2016) 7610.

G. Paola, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L. C. Guido,  C. Matteo, D. Ismail, “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials”, Journal of Physics: condensed matter, 21 (2009) 395502.

J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple” Physical Review Letters 77 (1996) 3865.

H. J. Monkhorst & J. D. Pack, “Special points for Brillouin-zone intergrations”, Physical Review B 2 (1976) 5188.

C. Zhang, C.-L. Wang, J.-C. Li & K.Yang, “Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3”, Chinese physics 16 (2007) 1422.

[19] A. H. Dorian, H. N. Mohammed, L. Sean, Y. Aibing & C. S. Charles, “Ab Initio study of phase stability in doped TiO2”, Computational Mechanics, 50 (2012) 185.

[20] A. Fazzio, R.J. Baierle, S.B. Fagan, R. Mota, R. & J. R. Antonio, “Ab Initio study of Si doped Carbon nanotubes: Electronic and structural properties”, Materials research society symposium proceedings (2001) 675.

O. S. David, G. G. Kate, J. M. Benjamin & W. W. Graeme, “Understanding Conductivity anomalies in CuI-based delafossite transparent conducting oxides: Theoretical Insights” Journal of Chemical Physics 132 (2010) 024707.

O. S. David, W. Aron & W. W. Graeme, “Understanding the p-type conduction properties of the transparent conducting oxide CuBO2: A density functional theory analysis”. Chemistry of Materials 21 (2009) 4568.

M. A. Aqeel & H. A. Ali, “Doping, vacancy formation and substitutional effects on  semiconductor selection of rutile TiO2 crystal”, Chemistry and material research 3 (2013) 22.

A. Mahmud & P. J. Daniel, “Structural and electronic properties of iron doped technetium sulphide”, Proceedings of SAIP 2014 (2014) 558.
How to Cite
Alhassan, S. S., Shuaibu, A., & Onimisi, M. Y. (2019). Structural and Electronic Properties of Delafossite CuGa<sub>1−x</sub>Mn<sub>x</sub>O<sub>2</sub&gt;(X=0.5) Nanocomposite: A First Principle Study. Physics Memoir - Journal of Theoretical & Applied Physics, 1(3), 106-112. Retrieved from
Theoretical / Mathematical & Computational Physics