The Effect of Active Layer Thickness on the Performance of Tin Halide Perovskite (CH_3NH_3SnI_3)


  • B. A. Ikyo Department of Physics, Benue State University, Makurdi
  • F. O. Abutu Department of Physics, Benue State University, Makurdi
  • A. Itodo Department of Physics, Benue State University, Makurdi


GPVDM software, Organic solar cells, Perovskites, Absorber thickness


The effect of active layer thickness on the electrical properties of Tin Halide Perovskite (CH_3NH_3SnI_3) was studied using the General-purpose Photovoltaic Device Model (GPVDM) software which is an efficient tool in simulating optoelectronic devices. The simulation was based on some semi-empirical results, and the parameters were inputed to definite materials of each active layer of the solar cell while parameters such as operational temperature and suggestive resistance were based on default entry of the GPVDM simulation software. Absorber thickness was varied from 100nm to 1000nm while other parameters were kept constant. Optimum efficiency of 13.9% was obtained by absorber layer with 600nm thickness, with fill factor and open circuit voltage values decreasing as the absorber thickness increases. Results also showed that the efficiency of this device can be improved by adjusting the active layer thickness.


N. Singh, A. Chaudhary, S. Saxena, M. Saxena & N. Rastogi, Electrical simulation of organic solar cell at different charge carrier mobility", IOSR Journal of Applied Physics, 9(2): (2017) 1-4.

N. Tailor, M. Abdi-Jalebi, V. Gupta, H. Hu, M. Dar, G. Li & S. Satapathi, Recent progress in morphology optimization in perovskite solar cell, Journal of Materials Chemistry A, 8(41): (2020) 21356-21386.

V. Le Corre, M. Stolterfoht, L. Perdigón Toro, M. Feuerstein, C. Wolff & G. Gil-Escrig, Charge transport layers limiting the efficiency of perovskite solar cells: How to optimize conductivity, doping, and thickness, ACS Applied Energy Materials, 2(9): (2019) 6280-6287.

X. Zhang, Z. Zhou, S. Ma, G. Wu, X. Liu & M. Mateen, Fused tetra-phenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells, Chemical Communications, 56(21): (2020) 3159-3.

A. Babayigit, H. Boyen & B. Conings, Environment versus sustainable energy: The case of lead halide perovskite based solar cells, MRS Energy & Sustainability, 5(1): (2018) 231-247.

P. Gao, M. Grätzel & M. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environental Science, 7(8): (2014) 2448-2463.

A. Kojima, K. Teshima, Y. Shirai & T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131(17): (2009) 6050-6051.

H. Du, W. Wang & J. Zhu, Device simulation of lead-free CH_3NH_3SnI_3 perovskite solar cells with high efficiency, Chinese Physics B, 25(10): (2016) 108802.

A. Di Carlo, A. Agresti, F. Brunetti & S. Pescetelli, ``Two-dimensional materials in perovskite solar cells, Physical Review B, 2(3): (2020) 031003.

K. Chakraborty, S. Malakar, D. Mandal, R. Mondal & A. Maiti, Experimental prediction of effect of thickness of active layer of photovoltaic device on a series of electrical, (2019).

H. Abdulsalam, G. Babaji & H. Abba, The effect of temperature and active layer thickness on the performance of CH_3NH_3PbI_3 perovskite solar cell: A numerical simulation approach, Journal of Foundations and Applications of Physics, 5(12): (2018) 141-151.

A.B. Coulibaly, S.O. Oyedele, N.R. Kre & B. Aka, Comparative study of lead free perovskite solar cells using different hole transport materials, Modelling and numerical simulation of material science, 9(1): (2019) 97-107.

D. Patel, ``Optimization of active layers thickness of perovskite solar cell: GPVDM simulation study, JETIR, 5(10): (2018) 139-143.

R. MacKenzie, An introduction to Modelling Solar cells (Ebook), Nothingham: Creative Common, 2nd ed.: (2019) 1-7.

F. Azri, A. Meftah, N. Sengouga & A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell, Solar Energy, 181: (2019) 372-378.

J. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobson, M.E. Calvo, A. Abate, M. Gratzel, H. Miguez & A. Hagfeldt, Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement, Advanced Materials, 28(25): (2016) 5031-5037.

A. Himal, A. Khechekhouche, I. Kemerchou, N. Lakhdar, B. Benhaoua, F. Rogti, I. Telli & A. Saadoun, ``GPVDM simulation of layer thickness effect on power conversion efficiency of CH_3NH_3PbI_3 based planar heterojunction solar cell, International Journal of Energetica, 3(1): (2018) 37-41.

H. Snaith, A. Abate, J. Ball, G. Eperon, T. Leijtens & N. Noel, Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters, 5(9): (2014) 1511-1515.




How to Cite

Ikyo, B. A., Abutu, F. O., & Itodo, A. (2021). The Effect of Active Layer Thickness on the Performance of Tin Halide Perovskite (CH_3NH_3SnI_3). Physics Memoir - Journal of Theoretical & Applied Physics, 3(1), 48–57. Retrieved from



Material Science, Photonics & Solid State Physics